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ABSTRACT

In this paper we have given a brief review of tharidelbrot set, one of the best known icons of &lacivhich
arises from the iteration of the complex polynonoifithe formz? + c. We have discussed about the role of critical {oin

in such a study with the help of Schwarzian deiveat
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1. INTRODUCTION

The Mandelbrot set has a celebrated place in fragg@metry, a field first investigated by the Frenc
mathematicians Gaston Julia and Pierre Fatou astavpcomplex dynamics at the beginning of th& 2entury. Gaston
Julia(1893-1978) wrote a paper title"emoire sur literation des fonctions rationellefA Note on the lIteration of
Rational Functions)10] where he first introduced the modern idea duba setas a part of complex dynamics. In this
paper Julia gave a precise description of the fsétose points of the complex plane whose orbitdenrihe iteration of a
rational function stayed bounded. In 1978 RobertBiboks and Peter Matelski investigated some suljpp@f Kleinian

groups [17] and as a part of this investigatiorytfiest introduced the concept of what we now éaéindelbrot set.

Benoit Mandelbrot (1924-2010) was a Polish-bormEhemathematician, who spent most of his careéBMts
Thomas J. Watson Research Center in Yorktown Heldgv York. He was inspired by Julia's above memdpaper on
complex dynamics and used computers to exploretivesks. In the year 1977, as a result of his retede discovered
one of the most famous fractals, which now beassriaime: the Mandelbrot set. O March 1980 Mandelbrot first
visualized this set [18]. He studied the paramspaice of the complex quadratic polynomials in aiclarthat appeared in
the Annals of New York Academy of scieficy.

The Mathematical study of the Mandelbrot set atyubégan with the works of Adrien Douady and John H
Hubbard [7] who established many of its fundameptaperties and named the set in honor of Mandelbrterest in the
subject flourished over and many other well knowathematicians began to study the Mandelbrot sehz-etto Peitgen
and Peter Richter are the name of two such matheara who became well known for promoting the Mealbdot set
with computer oriented graphics and books [15].08d) account of developing period of the theoryahplex dynamics

can be found in [2],[5],[6],[22]. The authors ama@ng the most active contributors to this field.

Mandelbrot set may well be one of the most famillmages produced by the mathematicians and otlesiede
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2 Arun Mahanta, Heanta Kr. Sarmah & Gautam Choudhury

scientists of the ZDcentury. It challenges the familiar notion thag #iomain of simplicity and complexity are entirely
different. Because, the mathematical formula tkainvolved in the construction of Mandelbrot sehgists of simple
operations like multiplication and addition, sitllproduces a shape of great organic beauty angleity with infinite
subtle variations. The developments arising from Mandelbrot set have been as diverse as the rglghapes it

generates.

The shape of the Galaxies broke all Euclidean lafihe man-made world and deferred from the prigeif
natural world. If one identified an essential staue like this, Mandelbrot claimed, that the contcefpMandelbrot set, in
general fractal geometry, could be applied to ustded its component parts and make postulationstabbat it will
become in future. For instance interested reader se@ [19] for study about distribution of galaxiesan observed
universe. In today's world of wireless communicatimany wireless devices use fractal based compattpatable
antennas that pick up the widest range of knowquigacies [1], [20]. Fractal art is a form of algonic art created by
fractal objects produced by repeated iterationsosfie mathematical rules and representing the eddaliresults as still
images, animations etc. The Mandelbrot set canopsidered as a great icon for fractal art. Graplgisign and image
editing programs use fractal to create beautifatlynplex landscapes and life-like special effecterkested readers can go
through [3],[16] for finding such applications. Etal statistical analyses of forest can measurecarhtify how much
carbon dioxide the world can safely process [144ctl geometry may also be applied to the varfalds of medicine

such as cardiovascular system, neurobiology, pagiychnd molecular biology [4], [9].

The Mandelbrot set, like most of the other fragtalsses from a simple iterative process. The m®devolved
here is the iteration of the non-linear relatidp,, = an + C on the points of the complex plane. It turns duat tthe

same relation was already studied in the early@mtury by France mathematicians Gaston JuliaPaee Fatou which
lead to the discovery of the Julia sets. Like thenbelbrot set, the Julia set also have a fraatattsire and are generated
by using the same iterative process employed ingdreeration of the Mandelbrot set but with slighdifferent initial
conditions. Interested reader may go through [TIhgre is only one Mandelbrot set and infinitely maulia sets- each

point on the complex plane acting as a parametéretdulia set.

The Mandelbrot set, a very beautiful fractal stuoetenjoys a special status as a cultural icono,Atkeep
mathematics underlies the Mandelbrot set. Despigesyof study by brilliant mathematicians, someuratand simple-to-
state questions still remains un-answered. For pigrthough Mandelbrot set was known to the mathieadacommunity
since 1977 due to the complex form of shape ita aras able to estimated e 1.056591884% 0.0000000028by

Thorsten Forstemaniast in 2012 [8]. Much of the re-birth of interest in complex dynasieas motivated by efforts to

understand the stunning images of Mandelbrot dathwis the prime objective of this paper.

The rest of the paper is organized as follows:dotien 2, we provide a review of preliminary contsepnd

definitions. Section 3 deals with role of criticabit in determining the dynamics of the mh,t(z) = 7° + C . In section

4, we have given a brief discussion why the Manalbet is a fractal of typical nature. Finally, Saction 5, we have

given a concluding remark of our study.
2. SOME PRELIMINARIES

In order to carry our study, we first need to pdevsome definitions concerning classical deterrtiinishaotic
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Mandelbrot Set, The Mesmerizing Fractal With Intege Dimension 3

dynamical systems which are discussed in this@®cti

Definition 2.1: The orbit of a numberz, under function f :C — C where C denote the extended complex

plane i.e.,é =CUO {00} is defined as the sequence of points
2 3=1(z)2,=fz).--2,= "(z)=1(z), 21)

Here, " denote the fiterate of f , thatis , f composed with itselh times. The pointz, is called the seed

of the orbit.

For each poing, [] é , we are interested in the behavior of the sequgh@an in (2.1) and in particular, what
happens a$1 goes to infinity.

Definition 2.2: A point Z, 0C is calledperiodic pointof f if f"(z,) =z, for some integel =1. The
smallestn with this property is called the period Zf. Thus, the periodic points o, are the zeros of the function
F(z,,f)=1"(z)-2.

A periodic point with period one is termedfaed pointof f i.e., Z, is afixed pointof f if f(z,)=2z,.

Definition 2.3: Letv 0 C . For any complex valued functiofi :D — D whereD [ C , theattracting basinor
basin of attractionof v under the functionf is defined as the sed\; (v) of all seed values whose orbit limits to the
point v ,i.e.

A (V) :{ZDD: f"(2) _>v}

Note that the poinv does not necessarily have to lie . However, if v OD and f is continuous then for

a,z, 0D with f ”( z, ) - a implies a is a fixed point off , as

t(a)=f(lim f"(z)=lim () =a

n-oo n- oo

Fixed points play a major role in the study of dymeal systems. So, it is necessary to give someiapegtention

to the fixed points whenever they arise. Bellow,diseuss some types of fixed points that may anislynamical systems.
Definition 2.4 (Attracting Fixed point): Letf be a map from its domaib [ Cinto itself, then
(i) a finite fixed pointalJC is called arattracting fixed poinbf f if there exist a neighborhodd of a such

that the action off moves any poin in U other thana closer toa, i.e. | f(z)—a| <| z—a|

(i) Suppose, f (oo):oo then oo is called an attracting fixed point df if there exist a neighborhodd 0C of

co such that for any poinz in D nU other thanco
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4 Arun Mahanta, Heanta Kr. Sarmah & Gautam Choudhury

| f (Z)| > | Z|, i.e. the action off is to move each point il n U —{ 0 } closer too .

Remark 2.5: If a is a fixed point of a continuous mdip, then there necessarily existing some neighborhood

U O A (a). The proof of this does not require thht be differentiable @, but as we are only interested in specific

differentiable functions, here we give a proof ofdythe case whe|1f '(a)| <1

Theorem 2.6: Let f:D — Dwhere DOOC be such that f(a)=a, aDDand| f'(a)|<1, then a is an

attracting fixed point of . Furthermore, there exist sonse> 0 such thafS, (a) n DU A; (a).

Proof: Since| f'(a)| <1, one can select som® > 0 such that| f'(a)| < 0 < 1. By definition,

Z-a Z—a

Therefore there exist > 0 such that for any 0 D —{a} and for which| Z—a| < & ,we have

_ ‘ f(2)- (a)

Z—a

f(z) -a

<d=|f(z)-a|<d|z-a|<e

This shows that for poinsd S, (a), the function f moves z closer toa by a factor of at least. Hence,a
is an attracting fixed point df . If we further iterate the mag atz, generating the orbit &, each application off

takes the corresponding orbit point a step clasar. tHence, by using induction we may show that

‘ f"(2) - a‘ <0"|z-a|<d"e - 0 Whenever,zOD with |z-a|<¢.
ThusS, (a) n D O A (a)

Remark 2.7: From above it is clear that smaller the valuedoimplies faster the convergence bf' (Z) towards

a. As| f'(a)| < d, one can choose the value df according as the value bf'(a)| In particular, if f (a) =aand
f ’(a) = 0, then the value 0® can be taken to be extremely small leading to f&siconvergence. Hence, in such a case

the fixed pointa is calledsupper attracting
Definition 2.7: (Repelling fixed pointjet f be a map from its domaib [ Cinto itself, then
(i) a finite fixed pointaldC is called arrepelling fixed poinof f if there exist a neighborhodd of a such that the

action of f moves any poinz in U other thana further froma, i.e. | f( Z)—a| >| Z—a|

(i) Suppose, f (oo)=oo then oo is called amrepelling fixed poinbf f if there exist a neighborhodd OC of o such

that for any pointz in D nU other thaneo

Impact Factor (JCC): 2.6305 NAAS Ratj 3.19



Mandelbrot Set, The Mesmerizing Fractal With Intege Dimension 5

| f (Z)| < | Z|, i.e. the action off is to move each point il n U —{ 0 } further fromoo .

Theorem 2.8:Let f :D — D where DOC be such thatf(a)=a, adD andf'(a) > 1, thena is a repelling
fixed point of f . Furthermore, there exist sonse> Osuch that forallzJ D n S, (a)—{a} the orbit f n(Z) eventually
leaves, i.e. there existd such thaff " (z) Os, (a).

This theorem can be proving by some quick modificadf the proof of the Theorem 2.6.

Definition 2.9: The multiplier (or eigenvalue derivativd A of a rational mapf iterated N times, at the

periodic pointZ, is defined as:

f" (z), if z, # o0
A=

_r if 7, = oo

f"(z))

I

Where f " (z,) is the first derivative off " with respect toz at Z,.
0 Zy

Note that, the multiplier is same at all periodaints of a given orbit. Therefore, it can be regards multiplier

of the periodic orbit.

The absolute value of the multiplier is called #tability indexof the periodic point. It is used to check the

stability of periodic points.
Definition 2.10: A periodic pointZ, is calledattracting periodic point if| A | <1, supper attractingf |/l | =0
and isrepellingif | A | > 1. Itis calledindifferent or neutraWhen| A | =1
Definition 2.11: A dynamical systemf is calledchaoticif the following three conditions are fulfilled:
»  Periodic points off aredense
» The function f is transitive and
. f Dependssensitively on initial conditions

The periodic points off are calleddenseif for any periodic pointp; of f and for anye > 0, however small

may be, the open sphef, (pl) contains another periodic poift, of f .

The function f is calledtransitiveif for any pair of pointsx and y and for anyr >0 there is a third point
z0S, (X) , i.e. the open sphere centerna@nd radius , whose orbit comes within the sphe®e(y) . Further, f depends

sensitively on initial conditions there is aR>0 such that for anyS, (x) there isydS, (x) and a positive integek

such that the distance betwedr§ (x) and f “(y) s at leasR..
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6 Arun Mahanta, Heanta Kr. Sarmah & Gautam Choudhury
To carry out our study for the rest of this paperagnsider the maps of the form:
f.(z)=2* +c (2.2)

For different values of the parameter] C Below we have given a brief review of the reasmnchoosing such

maps:

Consider,h (z) = a z + B where,a # 0 (2.3)

Now, h™ (f,(H2))) = h*(a? 22 +2a Bz+ 3% +c)

2_pB+c
—qaz%+ 2,8 Z+&
a

By choosing appropriate values of £ and ¢ we can make this expression in to any quadratiction f that

we please.

Then
h™f.h=f = h™f h=f"foral k

This means that the sequence of iter%té& (z)} of a point z under f is just the image undeh™ of the
sequence of iteraté@fck(h(z))} of the point h(z) under f.. The maph transform the dynamical picture df to that

of f.. In particular, f k(z) - oo if and only if fck(z) — 00, The transformatiorh is called a conjugacy betweeh and
f. for somec . Any quadratic function is conjugate th for somec . So, by studying the dynamics df for cOC we
effectively study the dynamics of all quadraticypwmials. Now, we define theasin of attractioanc (00), filled in Julia

set K(fc), Julia setJ . of the mapf_.

Definition 2.12 : The setK(fc) of all those points of which do not converge too under iteration of the map

f. is called thdilled in Julia setof the mapf i.e.,

Cc

K(fe) = C=By ()
Clearly K(fc) is the set of all those points G whose orbits are bounded under iteration of thp Mha

Definition 2.9 : The Julia set] , of the mapf, is theboundarydK (f.) of the filled in Julia seK(f.).

Note that, the Julia sed, separates the two sets filled in Julia $e(f;) and basin of attractiorB;_ (00) of infinity.
Thus, for eachz, O J_, there is an open spher8, (ZO) with centre atZ,and radiusr > O, containing a point

udS ( Zo) such that iterates ofl under f_ converge to infinity as well as another pomi] S, (Z0 ) such that

iterates ofv under f_ do not converge to infinity.
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Mandelbrot Set, The Mesmerizing Fractal With Intege Dimension 7

Theorem 2.1 :The filled in Julia seﬂ((fc) is contained inside the closed disc of radidma>{|c| , 2}. That is
K(f.) 0{z|z| < max{|c|, 2}}

The proof of this theorem is immediate consequeficke following two lemmas.

Lemma 2.2: If |C| < 2, then the orbit of the points lie outside the leirof radius 2 i.e. the set of points
{ Z: | Z| > 2}, escape to infinity.

Note that if| C|s2, then K(fc) is a subset of the closed disc with cente® aind radius2, i.e. if |C|S2 then
K(f.)0{z|z|<2}.

The proof of this lemma can be found in [11].

Lemma 2.3 :If | Z|2|C|>2,then‘ f”(z)‘ ~ ® asn - o which means thaz[(0K( f, ), i.e. ZDch(OO).

C

From this lemma it is clear thatfit|>2, then K( f, ) O {z:| z|<| C|}

The proof of this lemma can be found in [5].

3. ROLE OF CRITICAL ORBIT IN DETERMINING THE DYNAMI  CS OF f,

The structure of the Julia set is strongly influeshdy the behavior of the critical point (see dé&bin 3.1) of f..

Clearly, f. has a single critical point &=0. The orbit of the critical point is called thetial orbit of f_. The critical

point of f_ is the pointz for which the pre-images of any given neighborhobdz under f ™ are not all distinct and

thus, allowing a well defined inverse to be spedifi

Let f(z) be an analytic map o0& whose power series expansionzgt[] C has the form

f(z) = f(z,)+a, (z-2)" +a.,(z-2) " + .. .wherea, 20
In this case we called¢, maps to f(zo)with degree or multiplicityv (ZO)=k. Now, z, is called acritical

pointof f if v, (ZO) >1.

From the expansion oif(z),

Since, k > 1 taking limit asz - z, impliesf'(z,) = 0.

Definition 3.1: A point Z,[] C is calledcritical point for the analytic functionf if f'(z,)=0.

3.2 The Schwarzian Derivative:The Schwarzian derivative, named after the Germathematician Hermann
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8 Arun Mahanta, Heanta Kr. Sarmah & Gautam Choudhury

Schwarz, is a strange operator that is invariateutinear fractional transformation. Rather thening to motivate its
origin further, we simply define it and try to empé its properties to find out the role of critigadint in the dynamics of

polynomial maps likef, .

Definition 3.3 The Schwarzian derivativef a function f is defined as

si(x) = 221 3( D’ f(x)J2

Df(x) 2| Df(x)

Where, D" f(x) represent the"hderivative of the functionf (x), n=123.

Proposition 3.4:If f is a polynomial of degree at least two such tHabats of its derivativef ' are real, then

Sf(x) < 0 . In particular, if all roots off are real, therSf(x) < 0 .

Proof: Supposeq;,a,, ..., a,; N1 be the real roots of ', then one can write

f'(x) = alx-a,)(x-a,) ... (x-a,).

Taking log on both sides we get

log f'(x) = loga +i log|x—a|

i=1

Differentiating,

t'(x) _ ¢
f'(x) i=

1 X~ 4

I £ B R A O !
Differentiating again— { = Z—
Thus,

e - I

i=1

For the second part, suppose that the distincsrobtf are B, <fB,<...<pf, where each rogf is of

k
multiplicity m, ;1<i < k. Thus, ifd is the degree off theani = d. Applying mean value theorem tb on each
i=1

of the interval( 4, , B,,,) we can find a root off ' in (3, ,4,,) for eachi = 1,2,..., k1. Also, f' is divisible by

k
(x=8 )™ for eachi . Therefore, f' has at Ieas(k—1)+Z(mi ~1) = d -1 real roots. Butf' is of degreed -1,
i=L

so, all the roots off ' must be real. Hence as shown ab(ﬁé(x) <0.

Although The Schwarzian derivative does not integarticularly well with most operations on funcat®e.g.,
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Mandelbrot Set, The Mesmerizing Fractal With Intege Dimension 9

addition, subtraction, division etc., functions lwibhegative Schawarzian derivatives have very istarg dynamical
properties that simplify their analysis. The matagon for that is the fact that this property Geodwarzian derivative) is

preserved by composition of functions and conseiijibg iteration of function.

Proposition 3.5: Supposef and g are two functions anld = f o g, then

sH{x) = sf(g(x)).[Dg(x)1* + Sdx).
In particular, if Sf < 0 and Sg < 0 thenSh< 0

Proof: From the usual chain rule:

Dh(x) = Df (g(x)). Dg(x)
Dh(x) = D* f(g(x)).[Dg(x)]* + Dyg(x).D?g(x)
D*h(x) = D* f(g(x)).[Dg(x]* + 3D (g(x)). D? g(x). Dg(x) + Df (g(x)).D>g(x).

1 sHx) = 27 fal))-[Dall* +3D° H(gl). D*g(x). Dglx) +Df (glx))- D*glx)
Df gx) Dg(x)

_E{ D f(g(x))- [Dg( l§ +Dg }
2 Df (9(x)). Dy )

o*(gd) _ 3D o) o, D0l) _ 3[ D0
{ Siled) 2 o) ((»”[9] o) 31 b9
= Sf(g(x)).[Dg(x)]* + Sdx)

Now, Sf < 0 = Sf(g(x)) < 0 also, Sg< 0 = Sg(x) < 0 which implies thatSHx) < 0

It is difficult to interpret graphically the propgass that a function with negative Schwarzian darixe follow.

However, by the following proposition we can atsesay something about the behavior of its derreati

Proposition 3.6: If the Schwarzian derivative of the functioh is always negative then its derivative cannot

have a positive local minimum or a negative locakimum.

Proof: Suppose thatx, is a local extremum ofDf . Which implies thatsz(xo) = Oand hence by the

definition of Schwarzian derivative,

By our assumptionf is of negative Schwarzian derivative, thereforemuest have either
Df(x,) >0 & D*f(x,) <0 or Df(x,) <0 & D*f(x,)>0
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10 Arun Mahanta, hheanta Kr. Sarmah & Gautam Choudhury

Now if Df has a positive local minimum x®§, then by definition we gddf (xo) > 0 Therefore,
D? f(xo) < 0. This means thaD*f changes sign from positive to negativexat This turns out thak, is a maximum
for Df rather than a minimum. HencBf cannot have a positive local minimum.

Similarly, Df cannot have a negative local maximum, fordf has a negative local maximumxgt then

Df (xo) < 0 so thaD? f(XO) > 0. This means thaD*f changes sign from negative to positivexat meaning thatx,
is a minimum rather than a maximum.

Theorem 3.7:Suppose thaSf is always negative. I, is an attracting periodic points df , then either the
immediate basin of attraction of, extend to+ o , or there is a critical orbit of whose orbit is attracted to the orbit of
Xg-

Proof: We will first show that if X, is a attracting fixed point with finite immedia&ttracting basin, then the
basin contains a critical point.

The immediate basin of attraction of a fixed poigt must be an open interval, for otherwise by coritynuve

could extend the basin beyond the end points. Sup;ﬂa,b) be the immediate basin of attraction of the fix@inht X,

wherea andb both finite.

sincef :(a,b) - (a,b), f must preserve the end points(af,b) and therefore,f(a) and f(b) are end points
of f[(a, b)]

Case 1:Whenf(a) = f(b),ie.if f(a)=a = f(b) or f(a)=b = f(b)

A
"a b a b
a) ( (b)
Figure 3.1 (a)f(a):a: f(b), (b) f(a)=b= f(b)

In this case Rolle's theorem implies that thera oint ¢ [ (a,b) such thatDf (c): 0.ie. (a,b) contains a

critical pointc of f which must be attracted ey .

Case 2:Supposef(a) =a and f(b) = b
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Mandelbrot Set, The Mesmerizing Fractal With Intege Dimension 11

a b
Figure 3.2 (f(a) =a and f(b) = b)

Since (a, b) is the immediate basin of attraction gf so f can have no other fixed point (ra, b) other than
X,- Clearly, f(x) > x on (a,x,) and f(x) < x on (x, ,b), since otherwise nearby orbit points would move afvam

Xq. Now, the mean value theorem implies that theeeds] (a, xo) for which

Df (¢) = f(a) - flx) _a-x —1
a—X, a-x%,

Note thatc # x, as Df (x,) < 1.

Similarly, there is a pointl [ (X, ,b) such thaDf (d)=1. Therefore, on the intervdkc, d) which containsx,
in its interior, we haveDf (¢) =1, Df(x,) <1, and Df (d) = 1. So, Df has a local minimum somewhere (o, d).
By Proposition 3.6 Df cannot have a positive local minimumGo, d) and so it must attain a negative value(dnd).

By intermediate value theorerlf must take the valu@, and hencef has a critical point i(a, b).

Case 3:When f(a) = b and f(b) = a

a b
Figure 3.3: (f(a) = b and f(b) = a)

Supposeg = f 2, Clearly (a,b) is the basin of attraction of attracting fixed moix, forg. Now,
g(a) = f(f(a)) = f(b) =a andg(b) = f(f(b)) = f(a) =b. Also by the Proposition 3.5g < 0, therefore, by case

2 above,g has a critical point in (a,b).

Now, Dg(c) = 0 = Df (f(c)).Df (c) = 0 = Df (f(c)) =0 or Df (c) = 0
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12 Arun Mahanta, hheanta Kr. Sarmah & Gautam Choudhury

Which follows that one ot or f(c) is a critical point of f . As both of them lie ir(a,b), f has a critical
point in (a,b).

Note that the periodic points play an importanerii the iteration theory and hence it has an itgmbrrole in
non- linear dynamics also. As the critical pointlviind the attracting cycles of the function uséat iteration, an

immediate consequence of this theorem is thatljish&s to explain why critical points are used It prbit diagrams.

An immediate application of this theorem to the mfpis that as fo|rz| > ma>{ 2,| C|} the orbit of z under
f. will be unbounded. So, there is no infinite basfnattraction. Thus, the second part of the theoesplies since
Sf, < 0. Also, the only critical point off . is atz = O, therefore, if there is an attracting periodicrgeifor f, the orbit

of z = 0 will find it.

4. THE MANDELBROT SET

Generally, in the study of polynomial functioh as a dynamical system, we first choose a seed vgjuand

then try to understand the long term behavior efgdaquence,,, z = f(zo), Z,= f(zl), . . . More particularly, we

will try to answer such question as:

»  For afixed polynomialf what seed value leads to bounded sequence?

» For a parameterized family of polynomials, how ke $et of such seeds depend on the parameter ?

Mainly for most of the families of polynomial syats, there is no obvious picture to make in the patar space,
since there is no obvious question to ask. Theystiidhe dynamics of complex polynomials and ratiofunctions is a

success story mainly because of the role playeatidygritical points, and therefore, in this casesmay study about:
* What happens to the critical points under iteraton

The Mandelbrot set is an answer to this questioriiie complex one parameter family of quadratio/poinials

{f.:cOC}.

The subset of the parameter plane cqlane) consisting of all parameter valaefor which the orbit of the
critical point z= Ounder the mapf _, i.e.

f..0-c-c*+c - (c2 +c)2 FC o e

Is bounded is termed as the Mandelbrot set.

Definition 4.1: The Mandelbrot seM is defined as:

M ={cOC:TheOrbit of 0is boundedunder iteration by f_}
-{coc:or >0, £/ (0)|<r,OnD N}

One of the particular interests is to represent détbrot set graphically. The simplest algorithm denerating a

representation of the Mandelbrot set is known asdpe Time' algorithm where we color each pointten parameter
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space depending on where its attractor lies i.ethér it is attracted to infinity or bounded withire set.

In view of Lemma 2.3 it is clear that,| it| >2, then| fc(0)| = |C| > 2 and therefore the orbit of the critical
point z= 0 necessarily escape to infinity in this case. Tatiuish these points we assign a particular ¢csky color-1,
to these points, i.e. the points for Wh|ic|1|> 2. Now, it is clear that Mandelbrot set constitutadsome points in the
parameter plane within th{a— 2, 2] X [— 2, 2] grid. To find out these points, we first choosenaximum number of
iteration, sayN, as the "bailout" limit. Then, for eackt value in this grid, we compute the set of points

{ fC”(O): n=12 -, N } If for somek (0 < k < N), fck(O) > 2, then clearly‘ fC"(z)‘ - © asn - o, and

therefore, we stop further iteration and assigordlto these points. Again i}‘,fc" (O)‘ <2 0k=12 ---, N thenwe

assign another color (contrasting to color-1), salpr-2 to this point in the parameter plane. Aftempleting the iteration

process for all the - values the region covered by color-2 is an apipnation of the Mandelbrot séd .

It is to be noted that though this algorithm alwagsrectly identifies the points outside the Madet set, the
imposed maximum number of iteration (i) causes the algorithm to mis-classify points dasdside the set since for
starting values very close to but not in the Mahdwlset may take hundreds or thousands of iteraitio escape. This mis-
classification of points near the boundaryMf set can be notice by comparing two figures gimsllow (Figure 4.1)

where Figure(a) and (b) are generated by takiny =10 and N = 150 respectively and considering 'green’ as ‘color-1'

and 'black’ as 'color-2'.

a b
Figure 4.1: Graphical Representation of MandelbrotSet[(A) N=10(B) N=150

As the Figure4.1(a) is generated by less number of iterations, tlgisré mis-classified more points as bounded.

Thus, higher the value olN , i.e. the number of iterations, will give more aletmage of the Mandelbrot set, but in this

case the computer will take more time for geneggtiire image.

The Mandelbrot set's true visual beauty rely ondbkring near its boundaries. Developing a stroalpring
algorithm helps display the beauty of the set bgvigling the stunning visual aspect of the set, Whatso gives the
excitement of studying the set? One of the mostfawpvay of doing this is by assigning differentars to the points in
the various regions such as inside the set, boyrofathe set. Also, for the points just outside teundary, colors are
determined by the number of iterations needed bythint to exceed a certain test value (us@lyin the Figured.2 , we

use blue for the points inside the set, greenHat in the boundary of the set and orange colotherpoints just outside
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the set. Gradually deeper color in orange indici®s number of iterations needed to exceed tast & in magnitude.

Figure 4.2: (The Mandelbrot Set)
4.2 Some Observations on Mandelbrot Set

Computer images of the Mandelbrot set, as inflgure 4.2, shows the estimated geometry of the Mandelbrot

set. It contains a big cardioid shaped regiongdalhebodyof the Mandelbrot set. This region is indicatedBoin Figure

o . 1 3 . . .
4.3 and it intersects the real axis@&t& Z & Cc= —Z. Towards its left, a circular area H with centéerca=—1 and

radius% is attached, called theeadof the set.

c=1/4

Figure 4 3: (The Body B and Head H of the MandelbrbSet)

The surface of these two parts are covered by sahly detailed structure of decoration which makes set a
fractal one. Closer inspection of these decoratgimsws that all of them are different in shape. Auwgh decoration
directly attached to the body is callegdmary bulbor decoration. In turn, there are many smalleod&@ons attached to
the boundary of each of these decoratioramtennas Again, antennas attached to each decoration seemsnsist of

severakpokesThe number of such spokes varies from decoratiatecoration as clearly visible in the Figure 4.4.
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(e) ()

Figure 4.4: (Some Decorations on the Primary Bulb)

The Mandelbrot set is indeed a fractal objecthimdense that it has repeating patterns at diffecales. In fact,
its boundary is filled with a halo of tiny copiektbe entire set, usually referred to ababy Mandelbrot setEach of these
baby Mandelbrot set is again surrounded by its balo of still tinier copies, and so on, smaller antaller scales without
end. For example, Figure 4.4 shows successive fizaiions of a portion of the Mandelbrot set. Whehe region
indicated by a rectangle in the Figure 4.4(a) igmifeed and plotted as Figure 4.4(b). Again thetipaor of the Figure
4.4(b) covered by the rectangle is magnified arattgdl as Figure 4.4(c), and so on. Note that, thaigse Figures
certainly suggest that the baby Mandelbrot setdilasland, well separated from one another anthfmain body of the
set, this fact is not true in reality. Douady andbHard have shown that the Mandelbrot set is cdaddc]. That is, the
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intricately branched decorations are filled witlafiients of baby Mandelbrot set. Though they arevisible at certain
level of magnification, they all link back to theam body of the set.

(@) N= 42 (b) N= 150 (c) N=210

(d) N=425 (e) N=900 (f) N= 9500
Figure 4.4: (Baby Mandelbrot Set)

Though the Mandelbrot set is a fractal object,btaindary is so complex and intricate that it haimtager
dimension [21]. The observation that each filamerthe decoration of the Mandelbrot set is filledhababy Mandelbrot
set might lead to the wrong conclusion that the dédlorot set is self similar. Actually, as Figur® 4uggests, every baby
Mandelbrot set has its very own pattern of extemi@torations, everyone different from every othe, the baby
Mandelbrot sets are not exact replicas of theMahdelbrot set. Which lead us to conclude thatMiaadelbrot set is not
exact self similar although it appears similar tor eyes. Mandelbrot introduced the term 'statibtsgdf similarity' to
represent such type of quasi similar objects [Ngjte that, the points constituting these (statitaelf-similar) objects
belongs to the same statistical distribution.

(@) N =100 (b)\360
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(c) N= 750 d) (N= 3400
Figure 4.5: (Baby Mandelbrot Sets are Not Exact SEBimilar)

5. CONCLUSIONS

The Mandelbrot set is one of the most beautifuhgxas of the fascinating world of fractals. Eveiid piece of

it is loaded with some beautiful almost self sim#&ructures. We tried to explore those beautifulctures. The study can

be useful in teaching and learning about the wofltlactals.
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