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ABSTRACT 

In this paper we have given a brief review of the Mandelbrot set, one of the best known icons of fractals which 

arises from the iteration of the complex polynomial of the form cz +2 . We have discussed about the role of critical points 

in such a study with the help of Schwarzian derivative.  
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1. INTRODUCTION 

The Mandelbrot set has a celebrated place in fractal geometry, a field first investigated by the French 

mathematicians Gaston Julia and Pierre Fatou as a part of complex dynamics at the beginning of the 20th century. Gaston 

Julia(1893-1978) wrote a paper titled "M´emoire sur l’iteration des fonctions rationelles" (A Note on the Iteration of 

Rational Functions) [10] where he first introduced the modern idea of a Julia set as a part of complex dynamics. In this 

paper Julia gave a precise description of the set of those points of the complex plane whose orbits under the iteration of a 

rational function stayed bounded. In 1978 Robert W. Brooks and Peter Matelski investigated some subgroups of Kleinian 

groups [17] and as a part of this investigation they first introduced the concept of what we now call Mandelbrot set. 

Benoit Mandelbrot (1924-2010) was a Polish-born French mathematician, who spent most of his career at IBM's 

Thomas J. Watson Research Center in Yorktown Height, New York. He was inspired by Julia's above mentioned paper on 

complex dynamics and used computers to explore these works. In the year 1977, as a result of his research, he discovered 

one of the most famous fractals, which now bears his name: the Mandelbrot set. On 1st March 1980 Mandelbrot first 

visualized this set [18]. He studied the parameter space of the complex quadratic polynomials in an article that appeared in 

the 'Annals of New York Academy of science'[12].  

The Mathematical study of the Mandelbrot set actually began with the works of Adrien Douady and John H. 

Hubbard [7] who established many of its fundamental properties and named the set in honor of Mandelbrot. Interest in the 

subject flourished over and many other well known mathematicians began to study the Mandelbrot set. Heinz-Otto Peitgen 

and Peter Richter are the name of two such mathematicians who became well known for promoting the Mandelbrot set 

with computer oriented graphics and books [15]. A good account of developing period of the theory of complex dynamics 

can be found in [2],[5],[6],[22]. The authors are among the most active contributors to this field. 

Mandelbrot set may well be one of the most familiar images produced by the mathematicians and other related 
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scientists of the 20th century. It challenges the familiar notion that the domain of simplicity and complexity are entirely 

different. Because, the mathematical formula that is involved in the construction of Mandelbrot set consists of simple 

operations like multiplication and addition, still it produces a shape of great organic beauty and complexity with infinite 

subtle variations. The developments arising from the Mandelbrot set have been as diverse as the alluring shapes it 

generates.  

The shape of the Galaxies broke all Euclidean laws of the man-made world and deferred from the properties of 

natural world. If one identified an essential structure like this, Mandelbrot claimed, that the concept of Mandelbrot set, in 

general fractal geometry, could be applied to understand its component parts and make postulations about what it will 

become in future. For instance interested reader may see [19] for study about distribution of galaxies in an observed 

universe. In today's world of wireless communication many wireless devices use fractal based compact and potable 

antennas that pick up the widest range of known frequencies [1], [20]. Fractal art is a form of algorithmic art created by 

fractal objects produced by repeated iterations of some mathematical rules and representing the calculated results as still 

images, animations etc. The Mandelbrot set can be considered as a great icon for fractal art. Graphic design and image 

editing programs use fractal to create beautifully complex landscapes and life-like special effects. Interested readers can go 

through [3],[16] for finding such applications. Fractal statistical analyses of forest can measure and quantify how much 

carbon dioxide the world can safely process [14]. Fractal geometry may also be applied to the various fields of medicine 

such as cardiovascular system, neurobiology, pathology and molecular biology [4], [9].  

The Mandelbrot set, like most of the other fractals, arises from a simple iterative process. The process involved 

here is the iteration of the non-linear relation czz nn +=+
2

!  on the points of the complex plane. It turns out that the 

same relation was already studied in the early 20th century by France mathematicians Gaston Julia and Pierre Fatou which 

lead to the discovery of the Julia sets. Like the Mandelbrot set, the Julia set also have a fractal structure and are generated 

by using the same iterative process employed in the generation of the Mandelbrot set but with slightly different initial 

conditions. Interested reader may go through [11]. There is only one Mandelbrot set and infinitely many Julia sets- each 

point on the complex plane acting as a parameter to the Julia set. 

The Mandelbrot set, a very beautiful fractal structure enjoys a special status as a cultural icon. Also, deep 

mathematics underlies the Mandelbrot set. Despite years of study by brilliant mathematicians, some natural and simple-to-

state questions still remains un-answered. For example, though Mandelbrot set was known to the mathematical community 

since 1977 due to the complex form of shape its area was able to estimated to be 0000000028.00565918849.1 ±  by 

Thorsten Förstemann just in 2012 [8]. Much of the re-birth of interest in complex dynamics was motivated by efforts to 

understand the stunning images of Mandelbrot set, which is the prime objective of this paper. 

The rest of the paper is organized as follows: in section 2, we provide a review of preliminary concepts and 

definitions. Section 3 deals with role of critical orbit in determining the dynamics of the map( ) czzfc += 2 . In section 

4, we have given a brief discussion why the Mandelbrot set is a fractal of typical nature. Finally, in section 5, we have 

given a concluding remark of our study. 

2. SOME PRELIMINARIES 

In order to carry our study, we first need to provide some definitions concerning classical deterministic chaotic 
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dynamical systems which are discussed in this section.  

Definition 2.1: The orbit of a number 0z under function CCf ˆˆ: →  where Ĉ  denote the extended complex 

plane i.e., { }∞∪= CĈ  is defined as the sequence of points  

( ) ( ) ( ) ( ),,,,, 100
2

2010 −==== n
n

n zfzfzzfzzfzz ⋯
                                                                           (2.1)

 

Here, nf  denote the nth iterate of f , that is , f  composed with itself n  times. The point 0z is called the seed 

of the orbit. 

For each point Cz ˆ
0 ∈ , we are interested in the behavior of the sequence given in (2.1) and in particular, what 

happens as n  goes to infinity. 

Definition 2.2: A point Cz ˆ
0 ∈  is called periodic point of f  if 00 )( zzf n =  for some integer 1≥n . The 

smallest n  with this property is called the period of0z . Thus, the periodic points of 0z  are the zeros of the function

000 )(),( zzffzF n −= . 

A periodic point with period one is termed as fixed point of f  i.e., 0z  is a fixed point of f  if 00 )( zzf = . 

Definition 2.3: Let Cv ˆ∈ . For any complex valued function DDf →: where CD ˆ⊆ , the attracting basin or 

basin of attraction of v  under the function f  is defined as the set )(vAf  of all seed values whose orbit limits to the 

point v ,i.e. 

{ }vzfDzvA n
f →∈= )(:)(  

Note that the point v  does not necessarily have to lie in D . However, if Dv ∈  and f  is continuous then for 

Dza ∈0,  with ( ) azf n →0  implies a  is a fixed point of f , as 

( ) ( )( ) ( ) azfzffaf n

n

n

n
=== +

∞→∞→ 0
1

0 limlim  

Fixed points play a major role in the study of dynamical systems. So, it is necessary to give some special attention 

to the fixed points whenever they arise. Bellow, we discuss some types of fixed points that may arise in dynamical systems. 

Definition 2.4 (Attracting Fixed point): Let f  be a map from its domain CD ˆ⊆  in to itself, then 

(i) a finite fixed point Ca∈  is called an attracting fixed point of f  if there exist a neighborhood U  of a  such 

that the action of f  moves any point z  in U  other than a closer to a , i.e. ( ) azazf −<−  

(ii) Suppose, ( ) ∞=∞f  then ∞  is called an attracting fixed point of f  if there exist a neighborhood CU ˆ⊂  of 

∞  such that for any point z  in UD ∩  other than ∞  
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zzf >)( , i.e. the action of f  is to move each point in { }∞−∩ UD closer to∞ . 

Remark 2.5: If a  is a fixed point of a continuous mapf , then there necessarily existing some neighborhood

)( aAU f⊆ . The proof of this does not require that f  be differentiable ata , but as we are only interested in specific 

differentiable functions, here we give a proof only for the case when ( ) .1<′ af  

Theorem 2.6: Let DDf →: where CD ⊆  be such that ( ) Daaaf ∈= , and ( ) 1<′ af , then a  is an 

attracting fixed point off . Furthermore, there exist some 0>ε such that ( ) ( )aADaS f⊆∩ε . 

Proof: Since 1)( <′ af  , one can select some 0>δ  such that 1)( <<′ δaf . By definition, 

( ) ( ) ( )
az

afzf
af

az −
−=′

→
lim  ,  

Therefore there exist 0>ε  such that for any { }aDz −∈  and for which ε<− az , we have 

( ) ( ) ( ) ( ) εδδ <−≤−⇒<
−
−

=
−

−
azazf

az

afzf

az

azf
 

This shows that for points ( )aSz ε∈ , the function f  moves z  closer to a  by a factor of at leastδ . Hence, a  

is an attracting fixed point off . If we further iterate the map f  atz , generating the orbit ofz , each application of f  

takes the corresponding orbit point a step closer toa . Hence, by using induction we may show that 

( ) 0→≤−≤− εδδ nnn azazf  Whenever, Dz ∈  with ε<− az . 

Thus ( ) ( )aADaS f⊆∩ε  

Remark 2.7: From above it is clear that smaller the value of δ  implies faster the convergence of ( )zf n  towards

a . As ( ) δ<′ af , one can choose the value of δ  according as the value of ( )af ′  In particular, if ( ) aaf = and 

( ) 0=′ af , then the value of δ  can be taken to be extremely small leading to very fast convergence. Hence, in such a case 

the fixed point a  is called supper attracting. 

Definition 2.7: (Repelling fixed point) let f  be a map from its domain CD ˆ⊆  in to itself, then 

(i) a finite fixed point Ca∈  is called an repelling fixed point of f  if there exist a neighborhood U  of a  such that the 

action of f  moves any point z  in U  other than a further from a , i.e. ( ) azazf −>−  

(ii) Suppose, ( ) ∞=∞f  then ∞  is called an repelling fixed point of f  if there exist a neighborhood CU ˆ⊂  of ∞  such 

that for any point z  in UD ∩  other than ∞  
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zzf <)( , i.e. the action of f  is to move each point in { }∞−∩ UD further from∞ . 

Theorem 2.8: Let DDf →: where CD ⊆  be such that ( ) Daaaf ∈= , and 1)( >′ af , then a  is a repelling 

fixed point of f . Furthermore, there exist some 0>ε such that for all ( ) { }aaSDz −∩∈ ε  the orbit ( )zf n  eventually 

leaves, i.e. there exists N  such that ( ) ( )aSzf N
ε∉ . 

This theorem can be proving by some quick modification of the proof of the Theorem 2.6. 

Definition 2.9: The multiplier (or eigenvalue, derivative) λ  of a rational map f  iterated n  times, at the 

periodic point 0z  is defined as: 










∞=′

∞≠′

=
0

0

00

,
)(

1

),(

zif
zf

zifzf

n

n

λ  

Where )( 0zf n′  is the first derivative of nf  with respect to z  at 0z . 

Note that, the multiplier is same at all periodic points of a given orbit. Therefore, it can be regarded as multiplier 

of the periodic orbit. 

The absolute value of the multiplier is called the stability index of the periodic point. It is used to check the 

stability of periodic points. 

Definition 2.10: A periodic point 0z  is called attracting periodic point if 1<λ , supper attracting if 0=λ  

and is repelling if 1>λ . It is called indifferent or neutral when 1=λ  

Definition 2.11: A dynamical system f  is called chaotic if the following three conditions are fulfilled: 

• Periodic points of f  are dense, 

• The function f is transitive, and 

• f Depends sensitively on initial conditions. 

The periodic points of f are called dense if for any periodic point 1p  of f and for any 0>ε , however small 

may be, the open sphere ( )1pSε  contains another periodic point 2p  of f . 

The function f  is called transitive if for any pair of points x  and y  and for any 0>r  there is a third point

)(xSz r∈ , i.e. the open sphere center at x  and radiusr , whose orbit comes within the sphere )( ySr . Further, f depends 

sensitively on initial conditions if there is a 0>R  such that for any )(xSε  there is )(xSy ε∈ and a positive integer k

such that the distance between )(xf k  and )(yf k is at leastR . 



6                                                                                                                                         Arun Mahanta, Hemanta Kr. Sarmah & Gautam Choudhury 

 
Impact Factor (JCC): 2.6305                                                                                                                     NAAS Rating 3.19 

To carry out our study for the rest of this paper we consider the maps of the form: 

( ) czzfc += 2                                                                                                                                                    (2.2) 

For different values of the parameter Cc ˆ∈  Below we have given a brief review of the reason for choosing such 

maps: 

Consider, ( ) βα += zzh  where, 0≠α                                                                                                         (2.3) 

Now, ( )( )( ) ( )czzhzhfh c +++= −− 22211 2 ββαα  

α
βββα c

zz
+−

++=
2

2 2  

By choosing appropriate values of βα ,  and c we can make this expression in to any quadratic function f  that 

we please.  

Then  

kk
cc fhfhfhfh =⇒= −− .... 11  for all k  

This means that the sequence of iterates ( ){ }zf k  of a point z  under f  is just the image under 1−h  of the 

sequence of iterates ( )( ){ }zhf k
c  of the point ( )zh  under cf . The map h  transform the dynamical picture of f  to that 

of cf . In particular, ( ) ∞→zf k  if and only if ( ) ∞→zf k
c . The transformation h  is called a conjugacy between f  and 

cf  for some c . Any quadratic function is conjugate to cf  for some c . So, by studying the dynamics of cf  for Cc∈  we 

effectively study the dynamics of all quadratic polynomials. Now, we define the basin of attraction ( )∞
cf

B , filled in Julia 

set ( )cfK , Julia set cJ  of the map cf . 

Definition 2.12 : The set ( )cfK  of all those points of Ĉ  which do not converge to ∞ under iteration of the map 

cf  is called the filled in Julia set of the map cf  i.e., 

)()( ∞−=
cfc BCfK  

Clearly ( )cfK is the set of all those points of Ĉ  whose orbits are bounded under iteration of the map cf . 

Definition 2.9 : The Julia set cJ  of the map cf  is the boundary )( cfK∂  of the filled in Julia set )( cfK . 

Note that, the Julia set cJ  separates the two sets filled in Julia set )( cfK  and basin of attraction ( )∞
cf

B  of infinity. 

Thus, for each cJz ∈0 , there is an open sphere ( )0zSr  with centre at 0z and radius 0>r , containing a point 

( )0zSu r∈  such that iterates of u  under cf  converge to infinity as well as another point ( )0zSv r∈  such that 

iterates of v  under cf  do not converge to infinity. 
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Theorem 2.1 : The filled in Julia set ( )cfK  is contained inside the closed disc of radious { }2,max c . That is 

( ) { }{ }.2,max: czzfK c ≤⊆  

The proof of this theorem is immediate consequence of the following two lemmas. 

Lemma 2.2 : If 2≤c , then the orbit of the points lie outside the circle of radius 2 i.e. the set of points 

{ }2: >zz , escape to infinity. 

Note that if 2≤c , then ( )cfK  is a subset of the closed disc with center at 0  and radius 2 , i.e. if 2≤c  then 

( ) { }2: ≤⊆ zzfK c . 

The proof of this lemma can be found in [11]. 

Lemma 2.3 : If 2>≥ cz , then ( ) ∞→zf n
c  as ∞→n which means that ( )cfKz∉ , i.e. ( )∞∈

cf
Bz . 

From this lemma it is clear that if 2>c , then ( ) { }czzfK c <⊆ : . 

The proof of this lemma can be found in [5]. 

3. ROLE OF CRITICAL ORBIT IN DETERMINING THE DYNAMI CS OF cf  

The structure of the Julia set is strongly influenced by the behavior of the critical point (see definition 3.1) of cf . 

Clearly, cf  
has a single critical point at 0=z . The orbit of the critical point is called the critical orbit of cf . The critical 

point of cf  is the point z  for which the pre-images of any given neighborhood of z  under 1−f  are not all distinct and 

thus, allowing a well defined inverse to be specified. 

Let ( )zf  be an analytic map on C whose power series expansion at Cz ∈0  has the form  

( ) ( ) ( ) ( ) .,..1
0100 +−+−+= +

+
k

k
k

k zzazzazfzf where 0≠ka  

In this case we called 0z  maps to ( )0zf with degree or multiplicity ( ) kzv f =0 . Now, 0z  is called a critical 

point of f  if ( ) 10 >zv f . 

From the expansion of ( )zf , 

( ) ( ) ( ) ( ) ...01
1

0
0

0 +−+−=
−
−

+
− k

k
k

k zzazza
zz

zfzf
 

Since, 1>k  taking limit as 0zz→  implies ( ) 00 =′ zf .  

Definition 3.1: A point Cz ˆ
0 ∈  is called critical point for the analytic function f  if 0)( 0 =′ zf . 

3.2 The Schwarzian Derivative: The Schwarzian derivative, named after the German mathematician Hermann 
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Schwarz, is a strange operator that is invariant under linear fractional transformation. Rather than trying to motivate its 

origin further, we simply define it and try to explore its properties to find out the role of critical point in the dynamics of 

polynomial maps like cf . 

Definition 3.3 The Schwarzian derivative of a function f  is defined as  

( ) ( )
( )

( )
( )

223

2

3










−=

xDf

xfD

xDf

xfD
xSf  

Where, ( )xfD n  represent the nth derivative of the function ( ) 3,2,1, =nxf  . 

Proposition 3.4: If f  is a polynomial of degree at least two such that all roots of its derivative f ′  are real, then 

( ) 0<xSf  . In particular, if all roots of f  are real, then ( ) 0<xSf  . 

Proof: Suppose, nααα ,...,, 21 ; 1≥n  be the real roots of f ′ , then one can write  

( ) ( )( ) ( )nxxxaxf ααα −−−=′ ...21 . 

Taking log on both sides we get 

( ) ∑
=

−+=′
n

i
ixaxf

1

logloglog α  

Differentiating, 
( )
( ) ∑

= −
=

′
′′ n

i ixxf

xf

1

1

α
  

Differentiating again, 
( )
( )

( )
( ) ( )∑

= −
−=









′
′′

−
′
′′′ n

i ixxf

xf

xf

xf

1
2

2
1

α
 

Thus,  

( )
( )

( )
( ) 0

2

11
2

1
2

<








′
′′

−
−

−= ∑
= xf

xf

x
xSf

n

i iα
  

For the second part, suppose that the distinct roots of f  are kβββ <<< ...21 where each root iβ  is of 

multiplicity kimi ≤≤1; . Thus, if d  is the degree of f  then dm
k

i
i =∑

=1

. Applying mean value theorem to f  on each 

of the interval ( )1, +ii ββ  we can find a root of f ′  in ( )1, +ii ββ  for each 1.,..,2,1 −= ki . Also, f ′  is divisible by 

( ) 1−− im
ix β  for each i . Therefore, f ′  has at least ( ) ( ) 111

1

−=−+− ∑
=

dmk
k

i
i  real roots. But f ′  is of degree 1−d , 

so, all the roots of f ′  must be real. Hence as shown above, ( ) 0<xSf .  

Although The Schwarzian derivative does not interact particularly well with most operations on functions e.g., 
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addition, subtraction, division etc., functions with negative Schawarzian derivatives have very interesting dynamical 

properties that simplify their analysis. The main reason for that is the fact that this property (-ve Schwarzian derivative) is 

preserved by composition of functions and consequently by iteration of function.  

Proposition 3.5: Suppose f  and g  are two functions and gfh �= , then  

( ) ( )( ) ( ) ( )xSgxDgxgSfxSh += 2][. . 

In particular, if 0<Sf  and 0<Sg  then 0<Sh  

Proof: From the usual chain rule: 

( ) ( )( ) ( )xDgxgDfxDh .=  

( ) ( )( ) ( )[ ] ( ) ( )xgDxDgxDgxgfDxhD 2222 .. +=  

( ) ( )( ) ( )[ ] ( )( ) ( ) ( ) ( )( ) ( )xgDxgDfxDgxgDxgfDxDgxgfDxhD 322333 ...3. ++= . 

( ) ( )( ) ( )[ ] ( )( ) ( ) ( ) ( )( ) ( )
( )( ) ( )xDgxgDf

xgDxgDfxDgxgDxgfDxDgxgfD
xSh

.

...3. 32233 ++
=∴

 

( )( ) ( )[ ] ( ) ( )
( )( ) ( )

2
222

.

..

2

3











 +
−

xDgxgDf

xgDxDgxDgxgfD

 

( )( )
( )( )

( )( )
( )( ) ( )[ ] ( )

( )
( )
( )

223
2

223

2
3

2
3









−+





















−=

xDg

xgD

xDg

xgD
xDg

xgDf

xgfD

xgDf

xgfD
 

( )( ) ( ) ( )xSgxDgxgSf += 2][.  

Now, ( )( ) 00 <⇒< xgSfSf  also, ( ) 00 <⇒< xSgSg  which implies that ( ) 0<xSh .  

It is difficult to interpret graphically the properties that a function with negative Schwarzian derivative follow. 

However, by the following proposition we can at least say something about the behavior of its derivative: 

Proposition 3.6: If the Schwarzian derivative of the function f  is always negative then its derivative cannot 

have a positive local minimum or a negative local maximum. 

Proof: Suppose that 0x  is a local extremum of Df . Which implies that ( ) 00
2 =xfD and hence by the 

definition of Schwarzian derivative, 

( ) ( )
( )0

0
3

0 xDf

xfD
xSf =  

By our assumption f  is of negative Schwarzian derivative, therefore we must have either  

( ) ( ) 0&0 0
3

0 <> xfDxDf  or ( ) ( ) 0&0 0
3

0 >< xfDxDf . 
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Now if Df  has a positive local minimum at0x , then by definition we get ( ) 00 >xDf  Therefore, 

( ) 00
3 <xfD . This means that fD2  changes sign from positive to negative at0x . This turns out that 0x  is a maximum 

for Df  rather than a minimum. Hence, Df  cannot have a positive local minimum. 

Similarly, Df  cannot have a negative local maximum, for if Df  has a negative local maximum at0x , then 

( ) 00 <xDf  so that ( ) 00
3 >xfD . This means that fD2  changes sign from negative to positive at0x , meaning that 0x  

is a minimum rather than a maximum.  

Theorem 3.7: Suppose that Sf  is always negative. If 0x  is an attracting periodic points of f , then either the 

immediate basin of attraction of 0x  extend to ∞± , or there is a critical orbit of f  whose orbit is attracted to the orbit of 

0x . 

Proof: We will first show that if 0x  is a attracting fixed point with finite immediate attracting basin, then the 

basin contains a critical point.  

The immediate basin of attraction of a fixed point 0x  must be an open interval, for otherwise by continuity, we 

could extend the basin beyond the end points. Suppose, ( )ba,  be the immediate basin of attraction of the fixed point 0x  

where a  and b  both finite. 

Since ( ) ( )babaf ,,: → , f  must preserve the end points of ( )ba,  and therefore, ( )af  and ( )bf  are end points 

of ( )[ ]baf , . 

Case 1: When ( ) ( )bfaf = , i.e. if ( ) ( )bfaaf ==  or ( ) ( )bfbaf ==  

 
                                                  (a)                                                                               (b) 

Figure 3.1: (a) ( ) ( )bfaaf == , (b) ( ) ( )bfbaf ==  

In this case Rolle's theorem implies that there is a point ( )bac ,∈  such that ( ) 0=cDf ,i.e. ( )ba,  contains a 

critical point c  of f which must be attracted to 0x . 

Case 2: Suppose ( ) aaf =  and ( ) bbf =  
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Figure 3.2 ( ( ) aaf =  and ( ) bbf = ) 

Since ( )ba,  is the immediate basin of attraction of 0x  so f  can have no other fixed point in ( )ba,  other than 

0x . Clearly, ( ) xxf >  on ( )0, xa  and ( ) xxf <  on ( )bx ,0 , since otherwise nearby orbit points would move away from 

0x . Now, the mean value theorem implies that there is a ( )0, xac ∈  for which 

( ) ( ) ( )
.1

0

0

0

0 =
−
−

=
−
−

=
xa

xa

xa

xfaf
cDf  

Note that 0xc ≠  as ( ) 10 <xDf . 

Similarly, there is a point ( )bxd ,0∈  such that ( ) 1=dDf . Therefore, on the interval ( )dc,  which contains 0x  

in its interior, we have ( ) ( ) 1,1 0 <= xDfcDf , and ( ) 1=dDf . So, Df  has a local minimum somewhere in ( )dc, . 

By Proposition 3.6, Df  cannot have a positive local minimum in ( )dc,  and so it must attain a negative value in ( )dc, . 

By intermediate value theorem, Df  must take the value0 , and hence f  has a critical point in( )ba, . 

Case 3: When ( ) baf =  and ( ) abf =  

 

Figure 3.3: ( ( ) baf =  and ( ) abf = ) 

Suppose 2fg = . Clearly ( )ba,  is the basin of attraction of attracting fixed point 0x  for g . Now, 

( ) ( )( ) ( ) abfaffag ===  and ( ) ( )( ) ( ) bafbffbg === . Also by the Proposition 3.5, 0<Sg , therefore, by case 

2 above, g  has a critical point c  in ( )ba, .  

Now, ( ) 0=cDg ( )( ) ( ) 0. =⇒ cDfcfDf ( )( ) 0=⇒ cfDf  or ( ) 0=cDf  
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Which follows that one of c  or ( )cf  is a critical point of f . As both of them lie in ( )ba, , f  has a critical 

point in ( )ba, .  

Note that the periodic points play an important role in the iteration theory and hence it has an important role in 

non- linear dynamics also. As the critical point will find the attracting cycles of the function used for iteration, an 

immediate consequence of this theorem is that it helps us to explain why critical points are used to plot orbit diagrams. 

An immediate application of this theorem to the map cf  is that as for { }cz ,2max> , the orbit of z  under 

cf  will be unbounded. So, there is no infinite basin of attraction. Thus, the second part of the theorem applies since

0<cSf . Also, the only critical point of cf  is at 0=z , therefore, if there is an attracting periodic points for cf , the orbit 

of 0=z  will find it. 

4. THE MANDELBROT SET 

Generally, in the study of polynomial function f  as a dynamical system, we first choose a seed value 0z  and 

then try to understand the long term behavior of the sequence: ( ) ( ) ...,,, 12010 zfzzfzz ==  More particularly, we 

will try to answer such question as: 

• For a fixed polynomial f  what seed value leads to bounded sequence? 

• For a parameterized family of polynomials, how do the set of such seeds depend on the parameter ? 

Mainly for most of the families of polynomial systems, there is no obvious picture to make in the parameter space, 

since there is no obvious question to ask. The study of the dynamics of complex polynomials and rational functions is a 

success story mainly because of the role played by the critical points, and therefore, in this cases we may study about: 

• What happens to the critical points under iterations? 

The Mandelbrot set is an answer to this question for the complex one parameter family of quadratic polynomials 

{ }Ccf c ∈: . 

The subset of the parameter plane ( or c-plane) consisting of all parameter value c  for which the orbit of the 

critical point 0=z under the map cf , i.e. 

( ) ⋯→++→+→→ ccccccfc

2220:  

Is bounded is termed as the Mandelbrot set. 

Definition 4.1: The Mandelbrot set M  is defined as: 

{ }cfbyiterationunderboundedisofOrbitTheCcM 0:∈=  

( ){ }NnrfrCc n
c ∈∀≤>∃∈= ,0,0:

 

One of the particular interests is to represent Mandelbrot set graphically. The simplest algorithm for generating a 

representation of the Mandelbrot set is known as 'Escape Time' algorithm where we color each point on the parameter 
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space depending on where its attractor lies i.e. whether it is attracted to infinity or bounded within the set. 

In view of Lemma 2.3 it is clear that, if 2>c , then ( ) 20 >= cfc  and therefore the orbit of the critical 

point 0=z  necessarily escape to infinity in this case. To distinguish these points we assign a particular color, say color-1, 

to these points, i.e. the points for which 2>c . Now, it is clear that Mandelbrot set constituted by some points in the 

parameter plane within the [ ] [ ]2,22,2 −×−  grid. To find out these points, we first choose a maximum number of 

iteration, sayN , as the "bailout" limit. Then, for each c  value in this grid, we compute the set of points

( ){ }Nnf n
c ,,2,1:0 ⋯= . If for some ( )Nkk <<0 , ( ) 20 >k

cf , then clearly ( ) ∞→zf n
c  as ∞→n , and 

therefore, we stop further iteration and assign color-1 to these points. Again if, ( ) Nkf k
c ,,2,120 ⋯=∀<  then we 

assign another color (contrasting to color-1), say color-2 to this point in the parameter plane. After completing the iteration 

process for all the c - values the region covered by color-2 is an approximation of the Mandelbrot setM .  

It is to be noted that though this algorithm always correctly identifies the points outside the Mandelbrot set, the 

imposed maximum number of iteration (i.e.N ) causes the algorithm to mis-classify points as being inside the set since for 

starting values very close to but not in the Mandelbrot set may take hundreds or thousands of iterations to escape. This mis-

classification of points near the boundary of M  set can be notice by co mparing two figures given bellow (Figure 4.1) 

where Figure ( )a  and ( )b  are generated by taking 10=N  and 150=N  respectively and considering 'green' as 'color-1' 

and 'black' as 'color-2'. 

 

                                                               ( )a                                                    ( )b  

Figure 4.1: Graphical Representation of Mandelbrot Set [(A) N=10(B) N=150 

As the Figure ( )a1.4  is generated by less number of iterations, this figure mis-classified more points as bounded. 

Thus, higher the value of N , i.e. the number of iterations, will give more detail image of the Mandelbrot set, but in this 

case the computer will take more time for generating the image. 

The Mandelbrot set's true visual beauty rely on the coloring near its boundaries. Developing a strong coloring 

algorithm helps display the beauty of the set by providing the stunning visual aspect of the set, which also gives the 

excitement of studying the set? One of the most popular way of doing this is by assigning different colors to the points in 

the various regions such as inside the set, boundary of the set. Also, for the points just outside the boundary, colors are 

determined by the number of iterations needed by the point to exceed a certain test value (usually2 ). In the Figure 2.4 , we 

use blue for the points inside the set, green for that in the boundary of the set and orange color for the points just outside 
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the set. Gradually deeper color in orange indicates less number of iterations needed to exceed test value 2  in magnitude. 

 

Figure 4.2: (The Mandelbrot Set) 

4.2 Some Observations on Mandelbrot Set 

Computer images of the Mandelbrot set, as in the 2.4Figure , shows the estimated geometry of the Mandelbrot 

set. It contains a big cardioid shaped region, called the body of the Mandelbrot set. This region is indicated by B in Figure 

4.3 and it intersects the real axis at 
4

1=c  & 
4

3−=c . Towards its left, a circular area H with center at 1−=c  and 

radius 
4

1
 is attached, called the head of the set.  

 

Figure 4 3: (The Body B and Head H of the Mandelbrot Set) 

The surface of these two parts are covered by some richly detailed structure of decoration which makes the set a 

fractal one. Closer inspection of these decorations shows that all of them are different in shape. Any such decoration 

directly attached to the body is called a primary bulb or decoration. In turn, there are many smaller decorations attached to 

the boundary of each of these decoration as antennas. Again, antennas attached to each decoration seems to consist of 

several spokes. The number of such spokes varies from decoration to decoration as clearly visible in the Figure 4.4. 



Mandelbrot Set, The Mesmerizing Fractal With Integer Dimension                                                                                                                                15 

 
www.iaset.us                                                                                                                                        editor@iaset.us 

 
                                                                  (a)                                               (b) 

 
                                                             (c)                                                      (d) 

 
                                                             (e)                                                      (f) 

Figure 4.4: (Some Decorations on the Primary Bulb) 

The Mandelbrot set is indeed a fractal object, in the sense that it has repeating patterns at different scales. In fact, 

its boundary is filled with a halo of tiny copies of the entire set, usually referred to as a 'baby Mandelbrot set'. Each of these 

baby Mandelbrot set is again surrounded by its own halo of still tinier copies, and so on, smaller and smaller scales without 

end. For example, Figure 4.4 shows successive magnifications of a portion of the Mandelbrot set. Where the region 

indicated by a rectangle in the Figure 4.4(a) is magnified and plotted as Figure 4.4(b). Again the portion of the Figure 

4.4(b) covered by the rectangle is magnified and plotted as Figure 4.4(c), and so on. Note that, though these Figures 

certainly suggest that the baby Mandelbrot sets are like island, well separated from one another and from main body of the 

set, this fact is not true in reality. Douady and Hubbard have shown that the Mandelbrot set is connected [7]. That is, the 
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intricately branched decorations are filled with filaments of baby Mandelbrot set. Though they are not visible at certain 

level of magnification, they all link back to the main body of the set.  

 
                                     (a) N= 42                                 (b) N= 150                             (c) N=210 

 
                                  (d) N=425                                   (e) N= 900                             (f) N= 9500 

Figure 4.4: (Baby Mandelbrot Set) 

Though the Mandelbrot set is a fractal object, its boundary is so complex and intricate that it has a integer 

dimension [21]. The observation that each filament in the decoration of the Mandelbrot set is filled with baby Mandelbrot 

set might lead to the wrong conclusion that the Mandelbrot set is self similar. Actually, as Figure 4.5 suggests, every baby 

Mandelbrot set has its very own pattern of external decorations, everyone different from every other, i.e., the baby 

Mandelbrot sets are not exact replicas of the full Mandelbrot set. Which lead us to conclude that the Mandelbrot set is not 

exact self similar although it appears similar to our eyes. Mandelbrot introduced the term 'statistical self similarity' to 

represent such type of quasi similar objects [13]. Note that, the points constituting these (statistical self-similar) objects 

belongs to the same statistical distribution. 

 
                                                          (a) N = 100                            (b) N = 360 
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                                                          (c) N= 750                                 (d) N= 3400 

Figure 4.5: (Baby Mandelbrot Sets are Not Exact Self Similar) 

5. CONCLUSIONS 

The Mandelbrot set is one of the most beautiful examples of the fascinating world of fractals. Every little piece of 

it is loaded with some beautiful almost self similar structures. We tried to explore those beautiful structures. The study can 

be useful in teaching and learning about the world of fractals.  
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